
Software Engineering | Halstead’s Software

Metrics

A computer program is an implementation of an
algorithm considered to be a collection of tokens which

can be classified as either operators or operands.

Halstead’s metrics are included in a number of current

commercial tools that count software lines of code. By

counting the tokens and determining which are
operators and which are operands,

the following base measures can be collected :

n1 = Number of distinct operators.
n2 = Number of distinct operands.
N1 = Total number of occurrences of operators.
N2 = Total number of occurrences of operands.

In addition to the above, Halstead defines the following :

n1* = Minimum Possible Number of potential
operators.
n2* = Minimum Possible Number of potential
operands.

Halstead refers to n1* and n2* as the minimum possible
number of operators and operands for a module and a

program respectively. This minimum number would be
embodied in the programming language itself, in which the
required operation would already exist

(for example, in C language, any program must contain at
least the definition of the function main()), possibly as a
function or as a procedure:

n1* = 2, since at least 2 operators must appear for any function or
procedure :

1 for the name of the function and 1 to serve as an
assignment or grouping symbol, and n2* represents the
number of parameters, without repetition, which would need
to be passed on to the function or the procedure.

Halstead metrics –

Halstead metrics are :

 Halstead Program Length – The total number of operator
occurrences and the total number of operand occurrences.

N = N1 + N2

 Halstead Vocabulary – The total number of unique operator
and unique operand occurrences.

n = n1 + n2

 Program Volume (V) – Proportional to program size,
represents the size, in bits, of space necessary for storing the
program. This parameter is dependent on specific algorithm
implementation.

 Potential Minimum Volume – The potential minimum volume
V* is defined as the volume of the program in which a
problem can be coded.

V* = (2 + n2*) * log2(2 + n2*)

Here, n2* is the count of unique input and output parameters

 Program Level – To rank the programming languages, the
level of abstraction provided by the programming language,
Program Level (L) is considered. The higher the level of a
language, the less effort it takes to develop a program using
that language.

L = V* / V

The value of L ranges between zero and one, with L=1
representing a program written at the highest possible level
(i.e., with minimum size).

 Program Difficulty – This parameter shows how difficult to
handle the program is.
D = (n1 / 2) * (N2 / n2)
D = 1 / L

 Programming Effort – Measures the amount of mental
activity needed to translate the existing algorithm into

implementation in the specified program language.
E = V / L = D * V

E= Difficulty * Volume

 Language Level – Shows the algorithm implementation
program language level. The same algorithm demands
additional effort if it is written in a low-level program language.
For example, it is easier to program in Pascal than in
Assembler.

L’ = V / D / D
lambda = L * V* = L2 * V

 Intelligence Content – Determines the amount of
intelligence presented (stated) in the program This parameter
provides a measurement of program complexity,
independently of the program language in which it was
implemented.

I = V / D

 Programming Time – Shows time (in minutes) needed to
translate the existing algorithm into implementation in the
specified program language.

T = E / (f * S)

5 <= S <= 20. Halstead uses 18. The value of S has been
empirically developed from psychological reasoning, and its
recommended value for programming applications is 18.

number S = 18 moments / second

seconds-to-minutes factor f = 60

McCabe Cyclomatic Complexity
(Alias: McCabe number)

Fools ignore complexity. Pragmatists suffer it. Some can avoid it. Geniuses
remove it.
 - Alan Perlis, American Scientist

McCabe's cyclomatic complexity is a software quality
metric that quantifies the complexity of a software
program. Complexity is inferred by measuring the number
of linearly independent paths through the program. The
higher the number the more complex the code.

The Significance of the McCabe Number
Measurement of McCabe's cyclomatic complexity metric
ensures that developers are sensitive to the fact that
programs with high McCabe numbers (e.g. > 10) are likely
to be difficult to understand and therefore have a higher
probability of containing defects. The cyclomatic
complexity number also indicates the number of test cases
that would have to be written to execute all paths in a
program.

Calculating the McCabe Number
Cyclomatic complexity is derived from the control flow
graph of a program as follows:

Cyclomatic complexity (CC) = E - N + 2P
Where:
P = number of disconnected parts of the flow graph (e.g. a
calling program and a subroutine)
E = number of edges (transfers of control)
N = number of nodes (sequential group of statements
containing only one transfer of control)

Examples of McCabe Number
Calculations

